Non - elemental processing in olfactory discrimination tasks 4 needs bilateral input in honeybees
نویسندگان
چکیده
11 In patterning discriminations, animals have to differentiate a compound stimulus AB from each of its elements A and B. In positive patterning (PP), the compound is reinforced whilst the single elements are non-reinforced. In negative patterning (NP), single elements are reinforced whilst the compound is non-reinforced. Using olfactory conditioning of the proboscis extension response (PER), we asked whether honeybees (Apis mellifera) can solve these patterning problems when odorants are given unilaterally as well as bilaterally to the antennae. Separating the olfactory input space of bees into two independent zones using plastic walls placed between the antennae, we conditioned bees in PP and NP procedures, with input on one side, on both sides, or in an ambiguous problem where bees had to solve PP on one side and NP on the other side. We found that bees with simultaneous bilateral input solve both patterning tasks efficiently. In contrast, PP but not NP was learned by bees receiving unilateral olfactory input. Bees subjected to the ambiguous NP/PP problem only solved PP. As PP can be solved through mere elemental processes, but NP is critically dependent on the use of non-elemental learning processes, our results suggest that bilateral olfactory input is necessary for non-elemental processing to take place in the bee brain. 12
منابع مشابه
Non-elemental processing in olfactory discrimination tasks needs bilateral input in honeybees.
In patterning discriminations, animals have to differentiate a compound stimulus AB from each of its elements A and B. In positive patterning (PP), the compound is reinforced whilst the single elements are non-reinforced. In negative patterning (NP), single elements are reinforced whilst the compound is non-reinforced. Using olfactory conditioning of the proboscis extension response (PER), we a...
متن کاملAntennal lobe processing increases separability of odor mixture representations in the honeybee.
Local networks within the primary olfactory centers reformat odor representations from olfactory receptor neurons to second-order neurons. By studying the rules underlying mixture representation at the input to the antennal lobe (AL), the primary olfactory center of the insect brain, we recently found that mixture representation follows a strict elemental rule in honeybees: the more a component...
متن کاملThe effect of similarity between elemental stimuli and compounds in olfactory patterning discriminations.
We studied the ability of honeybees to discriminate between single odorants and binary olfactory mixtures. We analyzed the effect of the number of common elements between these two stimulus classes on olfactory discrimination. We used olfactory conditioning of the honeybees' proboscis extension reflex (PER), a paradigm in which odors can be associated with a reinforcement of sucrose solution. B...
متن کاملA Simple Computational Model of the Bee Mushroom Body Can Explain Seemingly Complex Forms of Olfactory Learning and Memory
Honeybees are models for studying how animals with relatively small brains accomplish complex cognition, displaying seemingly advanced (or "non-elemental") learning phenomena involving multiple conditioned stimuli. These include "peak shift" [1-4]-where animals not only respond to entrained stimuli, but respond even more strongly to similar ones that are farther away from non-rewarding stimuli....
متن کاملPartial unilateral lesions of the mushroom bodies affect olfactory learning in honeybees Apis mellifera L.
The mushroom bodies (MBs) are central structures in the insect brain that have been associated with olfactory learning and memory. Here we used hydroxyurea (HU) to treat honeybee larvae and induce partial MB ablations at the adult stage. We studied olfactory learning in honeybees with unilateral loss of the median calyces of their MBs and compared their ability to solve different forms of olfac...
متن کامل